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A~tract--The present paper is devoted to the investigation of the effect of liquid encapsulation on the 
Marangoni convection in its inner columnar liquid layer under a microgravity condition. The asymptotic 
solution of the mathematic model established in the paper was obtained for the immiscible axisymmetric 
coaxial liquid columns contained between planar faces. Numerical simulation based on the asymptotic 
solution was carried out. The main influence factors on the process were discussed in detail. It is found 
that proper selection of the related parameters will result in a remarkable reduction of the Marangoni 

convective flow. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

It is well known that thermocapillary (or Marangoni)  
convection induced by the gradient of surface tension 
as a function of temperature plays an important  role 
under a microgravity condition where the buoyance- 
driven convection is negligible. In order to grow high 
quality large sized crystals a technique called liquid 
encapsulation was developed in which a two layer 
liquid system will be involved. Compared with the 
case of single layer, the two layer system is much more 
complicated because the continuity conditions must 
be satisfied at the interface between two immiscible 
fluids. In refs. [1-6] Marangoni  convection in multi- 
layer system was studied from different angles. 
However, a more thorough investigation on the inter- 
action between two liquid layers is still an  open prob- 
lem which is urgent, not  only from viewpoint of theor- 
etical study, but  also from the practical applications. 

PHYSICAL AND MATHEMATICAL MODEL 

Consider two immiscible axisymmetric coaxial 
liquid columns contained between planar faces with a 
distance L apart, as shown in Fig. 1. Let R~ and R2 be 
the radius of the inner and the outer liquid columnar 
surface. The liquid is an incompressible Newtonian 
fluid of density pl, thermal diffusivity x~, thermal con- 
ductivity 2~, kinematic viscosity #~ and dynamic vis- 
cosity v~ (i = 1,2 for liquid 1 and liquid 2, respec- 
tively). The liquid-liquid interface 1 and liquid-gas 
interface 2 are assumed to be undeformable. The 
endwalls at z = + L/2 are maintained at temperature 

t Author to whom correspondence should be addressed. 

Tc and Th. Let fl be a measure of the temperature 
gradient along the liquid-gas interface 2. The outer 
liquid 2 is surrounded by a passive gas having neg- 
ligible density and viscosity. The interfaces 1 and 2 
possess surface tension al and a2, respectively. The 
law of surface tension vs temperature is assumed to 
be linear 

~, = ~ o , - ~ / , ( T , -  To) 

with To = ( 1 / 2 ) ( T ~ + T c ) ( i =  1,2) (1) 

in which a01 and a02 is the surface tension of interface 
1 and interface 2 at temperature To, 71 is the variation 
rate of surface tension with temperature T, where i = 1 
for the liquid-liquid interface and i = 2 for the l iquid-  
gas interface. Gravity is assumed to be absent. 

Under  conditions assumed before, the steady axi- 
symmetric motion of liquid i is governed by the fol- 
lowing equations : 

1 
- ( r u i ) ,  + w~z = 0 (2a)  
r 

1 
uiu~,+wiui.. = - - -p~r+v~(V2-1 / r2 )u i  (2b) 

Pi 

1 2 
uiwi, + wiwiz = PiPlz + viV wi (2c) 

u~T~, + w~T, z = x~V 2 Tg (2d) 

here, the Laplacian operator is shown by 

l a (  a \  a ~ 
V2 = r ffrrt r ~rr) + Oz ~ 

p~ (i = 1,2) is the liquid pressure for liquid 1 and 2, 
respectively ; ui and w~ are the velocity components of 
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A aspect ratio. R2/L  

Bi  Biot number, hR2/)~ 2 

C~/ integrate constant  
h heat transfer coefficient 
L length of liquid bridge 
M a  Marangoni number, ?'2fiR~/'l~2h2 
Rt inner layer radius 
R~ outer layer radius 
R e  Reynolds number, 72flR~/l~2v~ 

T, gas temperature 
T~. temperature at cold planar lace 
Th temperature at hot planar lace 
w* reference axial velocity 
a radius ratio of inner and outer liquid 

columns 
p dimensionless pressure 
r dimensionless radial coordinate 
u~ dimensionless radial velocity 

component for ith layer 
w, dimensionless axial velocity 

component for ith layer 

NOMENCLATURE 

- dimensionless axial coordinate. 

Greek symbols 
fl temperature gradient along z 

coordinate 
,, surface-tension temperature coefficient 
~- thermal diffusivity 
,;_ thermal conductivity 
t~ dynamic viscosity 
v kinematic viscosity 
/~ density 
a surface tension 
q~ any physical variable. 

Subscript 
s for single layer. 

Superscript 
* physical property ratio of liquid 1 to 

liquid 2. 

liquid i in the directions (r, z), respectively, and the 
cylindrical coordinate system is shown in Fig. 1, sub- 
scripts denote the partial differentiation. 

Equations (2a-d) are subject to the tollowing 
boundary conditions : 

No-slip and isothermal conditions considered at the 
rigid endwalls 

1 
: = -  L: u , =  w i = 0  T , =  T~. (3a) 

2 

- = - ~ L :  u , = w i = 0  T , = T h .  

On the liquid-liquid interface 1. r = R~ 

H I ~ 0  

(3b) 

~T] ~T 2 
21 ~ = 2 2  0r (3f) 

Ow~ 0w2 ?T  
~l ~r -~2-~-or = - 7 1  O z  (3g)  

On the liquid gas interface r = R2 

u2 = 0 (3h) 

~ w~ ~ T2 
: = " (3i) tt2 (~r - - / 2  (~z 

~3 T 2 
- ; t2 - -v -  = h[T2 - T~(z)]. (3j) 

c r  

(3c) The thermal condition (3j) presumes that the air 
(3d) temperature Td(z) is known and that the heat trans- 

ported at the liquid-gas interface can be described by 
(3e) using a heat-transfer coefficient h. 

T =T h 

L 
2 

Liquid I Liquid 2 
/ \J 

r Gas 

R] 

// \ 
Interface 1 Interface 2 

Fig. 1. Physical model. 

R2 

T = T c < T h 

m z 
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At both ends, x = +__ (L/2), 

The physical quantities are bounded at r = 0 as 

r = 0 :  u , ,w l ,p~ ,T l  < o e .  (3m) 

The velocity field must also satisfy the conditions : 

~ wlrdr = 0 (3n) 

R ~2 w2r dr = 0 (3p) 
i 

which follows from the fact that no net mass flow into 
or out of the liquid column exists. 

Introduce the following primed quantities : 

z = Lz" r=  R2r' wi= w,w~ ui= Aw,u~ 

# 2 W *  L , 
p ; =  R2 2 p; T ; -To=f lLT~  (4) 

where A is the aspect ratio, i.e. 

R2 
L 

and the characteristic velocity w, derived from the 
balance of condit ion (3i) as 

3'2flR2 
W ,  -- 

#2 

Then, with the primes dropped conventionally, the 
dimensionless equations can be written as : 

1 
- (rul), + wl_- = 0 (5a)  
r 

A3Re(UlUl~+w~ul~) 

- p,  plr+v*A ulna+ -r r 2 ~-A2ul= (5b) 

ARe(ul w'l~ + wl wl-) 

1 / wl~ 
-- ~ p , : + v * ~ w , , , +  ~ -  +A2w,=) (5c) 

AMa(ulTlr+WlTI~) t¢*( TI"+ --r + AZTI::) 

(0 < r < a) (5d) 

1 
(ru2).+w2: = 0 (5e) 

r 

A 3 Re(u2uz~ + w2u2:) 

= __P2r+AZ(u2 _ t Ua~ u2 r r2 +A2u2=) (5f) 

ARe(u2w2r + w2w2._) 

AMa(u2T2,+w2T2~) = T2r,+ T2--5 +A2T2= 
f 

( a < r <  1) 

1 z=+~ u~=w,=u2=w2=O 

1 
T1 = T2 = T-~ 

r = a  ul = 0  

W I ~- W 2 

Tj = T2 

Ow: 

2* OT1 OT2 
~r Or 

1 0W 2 7" OT 

Or ~* Or p* 0z 

r = O  

r =  1 u2 = 0  

t?w2 07"2 
Or Oz 

~T~ 
c3r = Bi(T2 - T.) 

ul,wl,pl,T~ < oo 

[ wlrdr = 0 

I[ w2rdr = O. 

(5g) 

(5h) 

(6a-d) 

(6e, f) 

(6g) 

(6h) 

(6i) 

(6j) 

(6k) 

(61) 

(6m) 

(6n) 

(6p) 

(6q) 

(6r) 

and a is the radius ratio of liquid 1 to liquid 2 

R I  

R2 

Superscript stands for the physical property ratio 

hR2 
B i = - -  

22 

The dimensionless numbers in equations (5) are 
defined as follows : 

Reynolds number  Re 

Re w,R2 72fir 2 
v2 ~ 2 v 2  

Marangoni  number  Ma 

Ma w,R2 72flR 
K2 ~ 2 ~ 2  

Blot  n u m b e r  Bi  
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of liquid 1 to liquid 2. (e.g. fl* = #,/P2), and symbol 
,,* is defined as 7* °'~ "" J ~ l ,,2. 

A S Y M P T O T I C  S O L U T I O N  

With restrictions of  Ma and Re by 

Ma, Re = o(A ') 

we write all unknowns @ in powers of A as follows : 

¢ = 0<, + Aqbl + O(A2). (7) 

By substituting equation (7) into equations (5) and 
(6) and posing the limitation A--, 0, we obtain the 
following system of equations at the leading order as: 

1 
(ruo ~ )~ + wo i -  = 0 

r 
(Sa) 

PIIJ, = 0 (Sb) 

1 1 
/ffPol:+w.,,. ,  + r wol, = 0 (8c) 

1 
TI, I, ,+ l],l~ = 0 (Sd) 

1 
-(ruoe),+w.e = 0  (Be) 
r 

P o e ,  - -  0 (8f) 

1 
- -  P o 2 :  Jr- WO2rr -I- -- |C0Z r = O (8g) 

r 

I 
T.2,, + - T.2,. = 0 (8h) 

F 

r = a :  u,/, = 0  (9a) 

w,, ,  = w , ~  ( 9 b )  

To, = T,,2 = T,, (9c) 

; ,  (?Tol ?To2 
? r  - -  ~ r  ( 9 d )  

1 (wo3 7* 8T ,  I 
- ( 9 e )  

p* ~r y* ~z 

r =  1: u 0 : = 0  (gf) 

?w,,~ ?TI,: 
~r ~_- (9g) 

t'To2 
ib" - Bi[T.2 T.(z)] (9h) 

Uo~,Wol,Po1,T,i < ~ (9i-1) 

f ' w o l  = ( 9 m )  rdr  0 

f, i = (9n) U'o2rdr O. 

(8) and the conditions (9) we 

{'3W01 
( r  

r = 0 :  

From equations 

obtain the leading-order solution to express the vel- 
ocity components. Here primes denote the differ- 
entiation with respect to z. 

Finally, we obtain the expressions of the velocity 
components u(,, Wo~, uo2 and Wo2 at leading order as a 
function of parameters it*, 7* and a for 0 < a < 1 a s  

1 
/gO I 

8fl* Ia4 (a2--1)2 a+3f l  /~, -4a2  + 4 I n  

x{[a  4 - 4 a  : l n a - l - ( a  s 4a 3 + 4 a l n a + 3 a ) 7 * ] r  

1 + ~ [ - a 4 + 4 a 2 1 n a + l + ( a  s 4a 3 
(U 

+ 4a In a + 3a)},*]r 3 } T"(z) (10a) 

I 
II'O I 

4#.[a4 ((12 1~.~)2 _ 4a 2 + 4 In a +  3J 

X l [ - - a  4 + 4 a  2 In a +  1 + (a 5 --4a ) + 4 a l n  a + 3a)7"] 

) 
~- - [ a  4 - 4 a  2 l n a -  1 - ( a  s - 4 a  ~ 

a- 

+4a  In a+ 3a)7*]r2}T~, (10b) 

1 
H02 

2 [ a  4 - - ( a 2 -  l ~ ) 2 t t  , - - 4 a  2 + 4 I n  a +  3]  

t[ .4 , , o 4  x a41na+~  lna+3a4. . . . .  4fl* lna 

( ' . 1 1 a 5 a - - ) ' , * J r  
+ 4 1 ~ * - 5  + - 4 # *  + g * l n a + 4 # * } `  J 

I a4 a4 ] 4 ] 2 a2 
+ a 4 1 n a - ~ [ . l n a + - - - - s a  + s a  

4p* 4p* 

+ \4/~*-  T In a -  4y*J '  J r  

+[a4 2a2_a(a: 1)(a+','*) l /~. +1 r l n r  

[ a2 ' ( a3 
+ ~ 2 a : - / , , - 4 1 n a - 2 +  • , -  t '* 

H ~,* 3 . 

woe = ! -{a 4 In a 
a 4 ( a 2 -  1)2 - - 4 a e + 4 1 n a + 3  

¢t* 
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In a 4 3 a 4 2 a2 1 1 
+ ~ + a  - - - + l n a - 2 # ,  4 # * + # ~  a 

lna+ y - - Z ) ~  - 3a,. [aa202 
1 2 

+ a ( 1 - a 2 ) ( a + y * )  + l l l n r +  ~[2a - a 2  ~-g--41n a #* 

~* 1 1 ] } 
- 2 +  - ~ ( a  3 - a ) 7 .  r z ra. (lOd) 

Here primes denote the differentiation with respect 
to z. 

The flow-induced temperature distribution can be 
expressed as : 

T1 ~ To~ +AT11 = T ~ + A M a  

rc~1 / x ] ~ x , / 1  l 2 \ IT-I 2 -- ~a2r )+CI2J[T '~(z )]  ( l la)  

T2 ,~ To2 + AT12 

I = T a + A M a  r2+ (In r -  1)r 2 

CO; 4 ] 
+-ig-r +C~Tlnr+C~ [r;(z)V (llb) 

where 

c° I  = 
--a  4 +4a  2 In a +  1 + (a 5 --4a 3 +4a ln  a +  3a)7" 

c~I = 

4p, Ia4 - (a2 -- 1) 2 p ,  -- 4a 2 + 4 1 n a + 3 1  

(llc) 

a 4 3 a 4 a 2 
a 4 l n a -  ~ l n a -  ~ ~ - - a  4 + a  2 -  --2,u* 

1 1 ( a  5 3 a 3 3a~ • 
+ l n a - - - -  + ~ t  ~ - - a  l n a +  4#* ~- -- ~-)7 

co~ = 

a 4 (a2-- 1) 2 _4a2 + 4 1 n a + 3  
,u* 

( l ld)  

a(a 2 -- 1)(a + ?*) 
_ a 4 + 2a  2 + 

CO~ a* = (lle) 
a 4 _ ( a 2 - 1 )  2 4a2+41na+3  

/~* 

1 1 2  a 2 1 1 3 a ) ) , , l  2a - ~ - 4 a l n a - 2 +  ~ -  ~ ( a  

a 4 -  (a2-- 1)2 --4a 2 + 4 1 n a + 3  
#* 

( l l f )  

a 2 a 2 a 2 
C~1T = - 8 x ~ C  °] + --~c°a~ + ~-(ln a -  1)C°~ 

a 4 
+ l~C°~+C~Tlna+C~I (llg) 

a 2 a 2 0 4 

a)C:: - Z c°a' C~T = - ~-C°~ + ~- (1 -21n  o~ 

1(2) ,(l) 
C~ T = - ~  fit. +1 C ° ~ + ~  ~/t.+ 1 C°~ 

( l lh)  

When a = 1, the model will be reduced to a single 
layer. Hence, a comparison with the result of Xu and 
Davis [6] for single layer liquid bridge can be made, it 
is not difficult to get : 

1 ^ it 
Uol = -- ~ ( r - r ~ )  Ta (12b) 

1(1) 
w02 = ~ ~ - r 2  Ta (12c) 

U02 = --  ~ ( r - -  r 3) T~. (12d)  

and similarly, 

COMPUTATIONAL RESULT OF AXIALLY 
HEATING 

For the case where the liquid columns are heated at 
the left and cooled at the right, assuming a linear 
distribution of temperature for the gas, the radial vel- 
ocity u0~ of the inner layer and u02 of the outer vanish, 
whereas the axial velocity w01 and Wo2 are functions of 
parameters/1", ? and a. We particularly focused our 
attention on the average axial velocity ~o~ of the inner 
layer as defined by 

1; 
~ol a Iw011 dr. 

In order to compare with the result for a single 
layer, the scale variable of velocity must be unified for 
both cases, such that 

~ 2 f l R 2  w, = (13) 
#2 

while the dimensionless average axial velocity for 
single layer should be expressed as 
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~', ~ -- r" dr. (14) 

W e  o b t a i n  the  fo l lowing  ca lcu la t ing  resul ts  : 
(1) T h e  axial  average  veloci ty o f  the  i nne r  layer  

( a b b r e v i a t e d  by  ave rage  veloci ty)  decreases  m o n o -  
t onous ly  wi th  the  inc reas ing  viscosi ty  ra t io  H*. The  
va r i a t i on  o f  p a r a m e t e r s  7* and  a gives no  c h a n g e  to 
such a t endency ,  bu t  causes  the  va lue  to be different ,  
as s h o w n  in Fig. 2 ( a , b ) .  U n d e r  c o n d i t i o n s  7* = 1, 
a = 0.5 an d  g* selected to be 0.1, 1, 10, respect ively,  
the  ave rage  veloci ty ~'0~ = 0.027, 0.013. 0.002 and  
~r'~ = 1.0417, 0.10417, 0.010417, so the  flow will be 
weakened  by  97 .5%,  87 .5% a n d  80 .8%,  respectively,  
as c o m p a r e d  wi th  t ha t  for  a single layer. 

(2) T h e  c h a n g e  of  the  average  velocity ~r'o~ wi th  7* 
for  three  ass igned  values  of  ~* a n d  a is s h o w n  in Fig. 
3. It is seen t ha t  the  ave rage  veloci ty decreases  first 
unt i l  it reaches  its m i n i m u m  poin t ,  a n d  then  increases  
wi th  7*. T h e  va lue  o f  7* at  the  m i n i m u m  po in t  shows  
a little c h a n g e  wi th  #* ,bu t  it decreases  wi th  the  in- 
c reas ing  a. F o r / t *  = 1 and  a = 0.5, a t  the  m i n i m u m  
po in t  ?'* ~ 0.6, we have  ~'o~ = 0.0133, the  flow velo- 
city reduces  92 .4% as c o m p a r e d  wi th  ff'~ = 0.173616. 

(3) T h e  c h a n g e  o f  ave rage  veloci ty wi th  a at  th ree  
ass igned  values  o f /~*  or  7* is s h o w n  in Fig. 4. It is 
k n o w n  f rom Fig. 4(a)  tha t  there  are  m i n i m u m  and  
m a x i m u m  po in t s  on  the  ff',,-a curve,  whe reas  in Fig. 
4(b)  the  m i n i m u m  po in t  will d i s a p p e a r  as the  abso lu t e  
va lue  o f  7* increases  to a ce r ta in  value.  It seems tha t  
the  inf luence o fT*  on  ~T'0~ is r a t h e r  s t rong.  

U n d e r  c o n d i t i o n s  ~* = 1,7* = I a n d  a = 0.995, the  

0.6 
* (a) 

0.5 

0.4 

I¢  0.3 

0.2 

0.1 

0 
0 

0.030 

o y * = - 5  
zx y*= 1 

1 2 3 4 5 6 7 8 9 10 
g* 

, (b) o a = 0.2 i 0.025 
A a = 0 . 5  

0.020 -~  . a = 0.8 
1 4  

,0o,5 "1%.. 
0.010 ¢ ~  

0,005 - " ~ ~ " ~ " " ~  t.,...._ ~,...., ¢ ~  

o 
1 2 3 4 5 6 7 8 9 10 

p.* 

Fig. 2. (a) Variation of average axial velocity of inner layer 
with p* for ",* = -5 ,1 ,7  and a = 0.5. (b) Variation of aver- 
age axial velocity of inner layer with p* for 7* = 1 and 

a = 0.2~ 0.5, 0.8. 

0.5 
(a) o g* = 1 

0 . 4 ' ¥ ~  A g* = 0.1 ..... ...,o/ 
0 . 3 -  

13 

x / j .  

-4 -3 -2 -1 0 1 2 3 4 

0.25 I 
(b) o al = 0.2 [ 

0.20 ~ A a 1=0.5 1 

0 . 1 5 7 "  ~ " a l = 0 " 8 /  

,3 , J  
o.10 

0.05 

o 
-4 -3 -2 -I 0 1 2 3 4 5 

Fig. 3. (a) Variation of average axial velocity of inner layer 
with 7* for #* = 0.1, 1, 10 a = 0.5. (b) Variation of average 
axial velocity of inner layer with 7* for #* = 1 and a = 0.2, 

0.5, 0.8. 

0.06 
(a) o g*  = 0.I 

0.05 ' 
A g * = l  

0.04 ~ * g* = 10 

1¢0.03 b ,  

o,o, \ 

0.005 0.185 0.365 0.545 0.725 0.905 
a 

0.30 
(b) 

0.25 / * ~ ' - * - - ' * ~  

0 . 2 0  ~ ~  

- _ *y*=7  ~ N k  , ~ ~ N ~  .., 
)~ O.15 

0.10 ( i  
0.05 

0 A __ , 

0.005 O.185 0.365 0.545 0.725 0.905 
a 

Fig. 4. (a) Variation of average axial velocity of inner layer 
with a for p* = 0.1, 1, 10 and 7" = 1. (b) Variation of aver- 
age axial velocity of inner layer with a for #* = 1 and 7" = 

- 5 , 1 , 7 .  

ave rage  veloci ty ~'0~ = 0.0004645,  so the  flow is weak-  
ened  by 9 9 . 7 %  as c o m p a r e d  wi th  ff'~ = 0.1511314. 

(4) In Fig. 5 the  d i s t r i b u t i o n s  o f  the  axial  veloci ty  
in the  vert ical  sec t ion  go ing  t h r o u g h  the  axle cen te r  
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-1.0 -td,,O - -  ~:,'O-,,,-~,ffi.v~_ 

-0.8 (a) o 
-0.6 - 
-0.4 
-0.2 

0 -  

0 .2-  o11.=0.1 
0.4 A p .*= l  o ~ ,  

0.80"6 • .11 *= l:~o.,,.,im~. ,~lO,,.,~, ~ ~ 1  

1.0 - . b , c  - -  

-0.10 -0.05 w 0 0.05 

-0.8 - (b) _ ' ~ " * ~ -  ~ = . . . - . ~ r g r - ~  
-0.6_-- . ~ . . . ~ 7 . ~ ~  o 
-0.4 _ . ~ ~ m . . . . .  O...... O~" 
020_ . r ; 7 " )  
0.2 -- ~ _ . . . . , # . . . - t 1 - ~ "  
0 4  • o 
0.6 - -  t , ~  
0 . 8 -  % 
1.0 I ~ I 

-0.4 -0.2 0 0.2 0.4 
W 

Fig. 5. (a) Axial velocity profile for p* = 0.1, 1, 10, 7" = 1 
and a = 0.5. (b) Axial velocity profile for p* = 1, 7" = - 5 ,  

1, 10 and a = 0.5. 

line are shown for the inner and outer layers, respec- 
tively. It is seen from the figures that the velocity 
at the interface decreases with increasing p* and the 
variation of  the inner velocity tends to be smooth so 
that the flow is weakened. The liquid flow velocity 
at the free surface (interface 2), corresponding to its 

maximum value, increases slightly with increasing/~*. 
The radial liquid velocity gradient near the free surface 
is not  obviously affected by #*. It can also be seen 
from the figures that there are two cells (with regard 
to the upper half  of  the section) occurring in the outer 
layer when p* is small. By increasing the value of  p* 
the cells near the interface become weaker and finally 
vanish, thus the flow turns to the single cell flow. F rom 
the maximum velocity on the curves, it seems that the 
affect of  Y* on the strength of  the liquid flow is much 
stronger than parameter p*, and the value of  Y* will 
determine the number of  cells in the outer layer (there 
is only one cell in the inner layer). Two cells occur 
when 7" is positive and less than a certain value. The 
change of  the sign of  7" will result in the change of  
the flow direction. With regard to the upper half  of  
the section, 7" changes from negative to positive and 
will lead to a change of  the flow direction of  the fluid 
in the inner layer from clockwise to counter clockwise. 

(5) Figure 6 shows the flow-induced temperature 
distribution. The curves of  temperature distributions 
for 7 * = K * = B i = 2 a = l  and selected values 
p* = 0.1, 1, 10 are drawn in Fig. 6(a). The lowest 
temperature occurs at the axle center. The change of  
temperature in the inner layer along the radial direc- 
tion tends to smooth as/2* increases. Parameter #* 
shows a stronger effect on the temperature of  the outer 
layer near the interface than onto the neighbour of  
the free surface 2, which is consistent with the flow 
field. The temperature distribution will become 
smooth as the absolute value of  7" is small, cor- 
responding to the weak flow case, whereas the tem- 
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Fig. 6. (a) The profile of flow-induced temperature distribution for p* = 0.1, 1.10 ; 7" = x* = Bi  = 2a = 1. 

(b) The profile of flow-induced temperature distribution for y* = - 5, 1, 7 ; #* = x* = Bi = 2a = 1. (c) 
The profile of flow-induced temperature distribution for K* = 0.1, 1, 10; p* = 7" = Bi = 2a = 1. (d) The 

profile of flow-induced temperature distribution for Bi = 0.1, 1, 10; p* = 7'  = x* = 2a = 1. 
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perature distribution shows an M-shape as the absol- 
ute value of  7* getting larger. The extreme occur at 
the interface as well as the axle center, as shown in 
Fig. 6(b). Figure 6(c) shows the temperature dis- 
tributions for ~¢*= 0.1, 1, 10 and /~*= ~ * =  Bi = 

2a = 1. It is seen that the temperature distribution in 
the outer layer does not influenced by K*, whereas 
in the inner layer it increases with increasing x*, 
and the variation of  temperature tends to smooth. 
Figure 6(d) shows the temperature distribution 
for B i = 0 . 1 ,  1, l0 under condition / ~ * = ~ , * =  
K * =  2a = 1. Bi has no affect on temperature dis- 
tribution for both inner and outer layers. 

CONCLUSIONS 

(l)  A mathematic model to describe the behaviour 
of  the thermocapillary flow of two immiscible axi- 
symmetric coaxial liquid columns is proposed as equa- 
tions (5) and (6). 

(2) An asymptotic solution valid for A ~ 0 is 
obtained for the flow and thermal fields, emphasizing 
the dependence of  radial and axial velocity and tem- 
perature distribution on property ratios of  the two 
liquid layers, and the radius ratio of  them. 

(3) An axially heated example shows that effective 
reduction of  the convection in the inner layer can be 

achieved through decreasing liquid viscosity of  the 
outer layer, choosing a proper ratio of  interface ten- 
sion to free surface tension and thinning the encap- 
sulation layer. 
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